
Software Engineering

and Architecture

Composite Pattern



Part-Whole Structures

• Hierarchical data structures pervade IT systems

– Folders (whole) and files (part) is a classic example



Gfx Part-Whole

• HotStone CardFigure

– … is not a fixed image

• Health/attack changes

• Frame

• ‘Emblem’ image

• Active ‘Z’

CS@AU Henrik Bærbak Christensen 3



How to design?

• Using the model perspective (who/what) we focus on 

concepts in the domain:

– Who: Folder and File

– What: Very different things

• Folder: addFile, addFolder, removeFile, etc.

• File: open, close, getType, getSize, setReadOnly

• Using a responsibility perspective (what/who) we 

instead focus on behavior:

– What: calculate size, move in structure, delete, set to read only

– Who: actually both folders and files…



Model-Perspective

• Design 1:

– Make disjoint classes as they are disjoint concepts

• class Folder {…} and class File {…}

• But – will require a lot of casting…

• This if section will appear in every shared operation!



Responsibility-Perspective

• Design 2:  Program to an Interface



Recursion…

• Notice that this is a recursive depth-first descent 

into the tree…

Whereas:
class File implements Component
‘s size() method will just return its

size in bytes…



The Pattern



Benefits and Liabilities

• Whole and part objects are treated identically

– Makes the client code much easier, avoiding a lot of testing on 

component types

• Easy to add new types of components

– The Linux/Windows explorer can browse and manipulate any file, 

even those not known at deploy time.

• Nonsense methods

– addComponent(Component c) is nonsense for Leaf/File

– i.e. Cohesion is low for Leaf 

• May throw ‘not supported exception’ or exhibit null behavior


