/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Composite Pattern

\ 4
AARHUS UNIVERSITET

Part-Whole Structures

* Hierarchical data structures pervade IT systems
— Folders (whole) and files (part) is a classic example

F o | S
« proj » Book » revisions b = [43 |\ Search revisions o]
Orgsnize v Includeinlibrary = Sharewith » New folder =~ A @
{ oL ltersturs * Name Date modified
| nyksecur
& Apr20s
1l Perflogs
& Dec200s
AL _ % figure-list
. Program Files
- #5] task-plan
7 "”;J .] tracks
-] workload
2 book-src 3
P 1

2

| my-selutions

2

| permissions

2

. releases

2

| resources

S
(-]

revisions
& Apr20ts
& Dec2008
2 src

6 items State: 3 Shared

@ hotciv - + x
File Edit View Bookmarks
F] £ ¥ 2 A ﬂ' /home/csdev/proj/frsproject/hotciv-framework-start/sr¢/main/java/hotciv | ¥

demo X | hotciv X

Go Tools Help

Directory Tree v
~ [@ hotciv-framework-start
» @ build
» @ gnu
- [src
- [@ main
- [@ java
- @
+ [@ framework
» [@ stub
* [view
» [@ visual
+ [resources
» [@ hotciv-tdd-start
» [@ paystation-python
» [@ paystation-tdd-iteration-0
» [@ producerconsumer

~

visual

™~

view

™~

stub

I~

framework

4items Free space: 7.5 GiB (Total: 18.1 GiB)
e e e se—]

/v Gfx Part-Whole

AARHUS UNIVERSITET
« HotStone CardFigure

— ... is not a fixed image
» Health/attack changes
 Frame
* ‘Emblem’ image
» Active Z

public class CardFigure extendq CompositeFigure

implements HotStoneFigure {

private void addEmblemFigure(Point position) {
// Add minion emblem
Point emblemPos = (Point) position.clone();
emblemPos.translate(positions.get(CardFigurePartType. EMBLEM_FIGURE) .x,
positions.get(CardFigurePartType.EMBLEM_FIGURE).y);
QuarterImageFigure emblemFigure = new QuarterImageFigure(associatedCard.getName(), emblemPos);

add(emblemFigure);

CS@AU Henrik Baerbak Christensen 3

/v

AARHUS UNIVERSITET HOW to deSIgn?

« Using the model perspective (who/what) we focus on
concepts in the domain:
— Who: Folder and File
— What: Very different things
» Folder: addFile, addFolder, removeFile, etc.
» File: open, close, getType, getSize, setReadOnly
« Using a responsibility perspective (what/who) we
instead focus on behavior:
— What: calculate size, move in structure, delete, set to read only
— Who: actually both folders and files...

/v Model-Perspective

AARHUS UNIVERSITET

* Design 1:
— Make disjoint classes as they are disjoint concepts
 class Folder {...} and class File {...}

« But — will require a lot of casting...

private static void displaySize (Object item) |
if (item instanceof File) |
File file = (File) item;
System . out. println(" File size is "+file.size ());
| else if (item instanceof Folder) |
Folder folder = (Folder) item;
System.out. println("Folder size is "+tolder.size () };

|
|

« This if section will appear in every shared operation!

/v

wesuvessrer RESPoONsibility-Perspective

* Design 2: ® Program to an Interface

Fragment: chapter/composite /CompositeDemo.java
/*% Define the Component interface
(partial for a folder hierarchy)
interface Component |

public void addComponent(Component sibling);
public int size ();

i

A
#

Fragment: chapter/composite/CompositeDemo.java
Define a (partial) folder abstraction
class Folder implements Component |

private List<Component> components = new ArrayList<Component>();

public void addComponent(Component sibling) |
components.add(sibling);
|

public int size () |
int size = (;
for (Component c: components) |
size += c.size ();
}

return size ;

/v

AARHUS UNIVERSITET Recursion...

* Notice that this is a recursive depth-first descent
into the tree...

Fragment: chapter/composite/CompositeDemo.java

/% Define a (partial) folder abstraction =/
class Folder implements Component |
private List<Component> components = new ArrayList<Component>();
public void addComponent(Component sibling) |{
components. add(sibling);
1
public int size () |
int size = 0;
for (Component c: components } |
size 4= c.size ();
}

return size ;

} Whereas:

]

class File implements Component

‘s size() method will just return its
size in bytes...

/v

AARHUS UNIVERSITET

operation
add
remove

«interface» n
Component] for each c in components { AN
c.operation();
}

N O
add

remove

/v

P — Benefits and Liabilities

 Whole and part objects are treated identically

— Makes the client code much easier, avoiding a lot of testing on
component types

« Easy to add new types of components
— The Linux/Windows explorer can browse and manipulate any file,
even those not known at deploy time.
 Nonsense methods
— addComponent(Component c) is nonsense for Leaf/File

— i.e. Cohesion is low for Leaf ®
« May throw ‘not supported exception’ or exhibit null behavior

